Problems

Problem 1.1 Given the real numbers 0 < a < b and c > 0, prove the inequalities

(a)
$$a < \sqrt{ab} < \frac{a+b}{2} < b$$
, (b) $\frac{a}{b} < \frac{a+c}{b+c}$.

Problem 1.2 Prove that |a+b| = |a|+|b| if and only if $ab \ge 0$. **Problem 1.3** Prove that

(a)
$$\max\{x,y\} = \frac{x+y+|x-y|}{2}$$
, (b) $\min\{x,y\} = \frac{x+y-|x-y|}{2}$.

Problem 1.4 Find, using the absolute value, a formula to express the function

$$\varphi(x) = \begin{cases} x & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Problem 1.5 Factor out the following expressions of $n \in \mathbb{N}$, so that the corresponding statements become self-evident:

- (a) $n^2 n$ is even,
- (b) $n^3 n$ is a multiple of 6,

(c) $n^2 - 1$ is a multiple of 8 when *n* is odd.

Problem 1.6 Prove by induction the following statements valid for all $n \in \mathbb{N}$:

(a)
$$a^n - b^n = (a - b) \sum_{k=1}^n a^{n-k} b^{k-1}$$
,

(b)
$$n^5 - n$$
 is a multiple of 5,

(c)
$$(1+x)^n \ge 1 + nx$$
 if $x \ge -1$.

HINT: In (a) make use of the properties of symbolic sums summarised in Appendix A. Problem 1.7 Prove by induction the following statements valid for all natural numbers n > 1:

(a) $n! < \left(\frac{n+1}{2}\right)^n$, (b) $2!4!\cdots(2n)! > [(n+1)!]^n$,

(c)
$$1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}.$$

HINT: In (a) use the inequality $\left(1+\frac{1}{n+1}\right)^{n+1} > 2$, valid for all $n \in \mathbb{N}$. In (b) prove first that $(2n+2)! > (n+2)^n (n+2)!$.

Problem 1.8

- (a) Show, with an example, that the sum of two irrational numbers can be rational.
- (b) Show, with an example, that the product of two irrational numbers can be rational.
- (c) Is it possible to find irrational numbers *x* and *y* such that $x^y \in \mathbb{Q}$?

Problem 1.9 Prove that

(a) $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$,

(b) $\sqrt{n} \notin \mathbb{Q}$ if *n* is not a perfect square (HINT: write $n = k^2 r$, where *r* does not contain any square factor),

(c) $\sqrt{n-1} + \sqrt{n+1} \notin \mathbb{Q}$ for all $n \in \mathbb{N}$.

Problem 1.10 Prove the identity, valid for all $x \in \mathbb{R}$,

$$\left(\frac{x+|x|}{2}\right)^2 + \left(\frac{x-|x|}{2}\right)^2 = x^2.$$

Problem 1.11 Identify the following sets:

$$\begin{array}{ll} \text{(i)} & A = \{x \in \mathbb{R} : |x-3| \leq 8\}, \\ \text{(ii)} & B = \{x \in \mathbb{R} : 0 < |x-2| < 1/2\}, \\ \text{(iii)} & C = \{x \in \mathbb{R} : x^2 - 5x + 6 \geq 0\}, \\ \text{(iv)} & D = \{x \in \mathbb{R} : x^3(x+3)(x-5) < 0\}, \\ \text{(v)} & E = \left\{x \in \mathbb{R} : \frac{2x+8}{x^2+8x+7} > 0\right\}, \\ \text{(v)} & E = \left\{x \in \mathbb{R} : \frac{2x+8}{x^2+8x+7} > 0\right\}, \\ \end{array}$$

Problem 1.12 Given real numbers a < b we define, for each $t \in \mathbb{R}$, the real number x(t) = (1-t)a + tb. Identify the following sets:

(i) $A = \{x(t) : t = 0, 1, 1/2\},$ (ii) $B = \{x(t) : t \in (0, 1)\},$ (iii) $C = \{x(t) : t < 0\},$ (iv) $D = \{x(t) : t > 1\}.$

Problem 1.13 Find supremum and infimum (deciding whether they are maximum and minimum respectively) of the following sets:

(i)
$$A = \{-1\} \cup [2,3),$$

(ii) $B = \{3\} \cup \{2\} \cup \{-1\} \cup [0,1],$
(iii) $C = \{2+1/n : n \in \mathbb{N}\},$

(iv) $D = \{(n^2 + 1)/n : n \in \mathbb{N}\},\$

(v)
$$E = \{x \in \mathbb{R} : 3x^2 - 10x + 3 < 0\},$$

(vi) $F = \{x \in \mathbb{R} : (x - a)(x - b)(x - c)(x - d) < 0\},$
with $a < b < c < d$ given real numbers.

- (vii) $G = \{2^{-p} + 5^{-q} : p, q \in \mathbb{N}\},\$
- (viii) $H = \{(-1)^n + 1/m : n, m \in \mathbb{N}\}.$